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FLUORESCENCE 

Fluorescent Bioconjugate Based on Gold Nanoparticles  
for the Determination of Staphylococcus aureus 
L. S. Arcila-Lozanoa, M. A. Ríos-Corripioa, B. E. García-Pérezb, M. E. Jaramillo-Floresc,  
C. A. Gonzálezd, R. C. Rocha-Graciae, J. M. Gracia-Jiménezf, and M. Rojas-Lópeza 

aInstituto Politécnico Nacional, CIBA-Tlaxcala, Tepetitla, Tlaxcala, México; bInstituto Politécnico Nacional,  
ENCB-Depto. de Inmunología, Ciudad de México, México; cInstituto Politécnico Nacional, ENCB-Depto. de 
Ingeniería Bioquímica, Ciudad de México, México; dInstituto Politécnico Nacional, ESM, Ciudad de México, 
México; eBenemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Centro de Investigaciones en 
Ciencias Microbiológicas, Puebla, Puebla, México; fBenemérita Universidad Autónoma de Puebla, Instituto de 
Física, Puebla, Puebla, México  

ABSTRACT 
A practical method to determine Staphylococcus aureus using 
bioconjugated gold nanoparticles is reported. The protocol uses gold 
nanoparticles stabilized by tetramethylrhodamine isothiocyanate- 
labeled streptavidin followed by functionalization with biotinylated 
anti-S. aureus antibodies. The streptavidin-stabilized gold nanoparti-
cles were obtained by titration and analyzed by ultraviolet–visible 
spectroscopy and transmission electron microscopy. The obtained 
fluorescent bioconjugate selectively linked to the surface of S. aureus 
in samples contaminated with the microorganism, as demonstrated 
by confocal micrographs. The biorecognition process was performed 
by mixing the fluorescent bioconjugate with the sample. Bacterial 
dilutions from 1 � 108 to 1 � 102 cell/ml of S. aureus were determined, 
obtaining sensitivity values of 1 � 105 cell/ml by photoluminescence 
and 1 � 102 cell/ml by bioimpedance. This methodology represents a 
useful bioanalytical approach for the determination of S. aureus. 
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Introduction 

Foodborne illnesses are usually infectious or toxic in nature and caused by bacteria, viruses, 
parasites, or chemical substances entering the body through contaminated food or water 
(European Food Safety Authority, European Centre for Disease Prevention and Control 
2014). The World Health Organization estimates that in 2015, 550 million (almost one 
in ten people in the world) fall ill and 230,000 deaths every year from diarrheal with a 
significant proportion of these cases following the consumption of contaminated food 
and drinking water. Children under 5 years of age carry 40% of the foodborne disease 
burden with 125,000 deaths every year (World Health Organization 2015). 

Staphylococcus aureus has been indicated as the fifth causative agent of all reported 
outbreaks (European Food Safety Authority, European Centre for Disease Prevention 
and Control 2016). S. aureus is a ubiquitous bacterium that is both a human and zoonotic 
commensal and is a common cause of foodborne poisoning worldwide from the ingestion 
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of heat-stable toxins produced in food (Morandi et al. 2007; Podkowik et al. 2013). The 
signs and symptoms of staphylococcal food poisoning occur when foods containing 
approximately 105–108 cells per gram or milliliter or enterotoxin (100 ng) are ingested 
(Sospedra et al. 2012; Wu et al. 2013). S. aureus may be transmitted to food by hands or 
drippage from the nose and mouth. Foods involved in staphylococcal food poisoning 
include canned mushrooms, cooked sausage, salads with eggs, meat and meat products, 
fowl and egg products, tuna fish, chicken, potatoes, pasta, baked goods milk, boiled goat 
milk, and other dairy products (González-Fandos et al. 1999; Nema et al. 2007; Normanno 
et al. 2007; Irlinger 2008; De Boer et al. 2009; Podkowik et al. 2013). 

Conventional bacterial identification methods usually include a morphological evalu-
ation of the microorganism as well as tests for the organisms’ ability to grow in various 
media. Although standard microbiological techniques allow the detection of single bacteria, 
amplification of the signal is required through the growth of a single cell into a colony. 
Traditional methods for the detection of bacteria are laborious, time consuming, and 
material intensive (Arora et al. 2011). These involve the following steps: pre-enrichment, 
selective enrichment, biochemical screening, and serological confirmation. A complex 
series of tests is often required before the identification is confirmed. The results of such 
tests are often difficult to interpret and not available on the time scale desired in the micro-
biological laboratory. In particular way, traditional technique for identification of S. aureus 
is described in the Mexican Official Standard NOM-115-SSA1-1994 (Diario Oficial de la 
Federación 1995). This method allows the determination of bacteria in food and is 
performed directly on selective medium plates and differential culture, with confirmation 
by coagulase and thermonuclease protocols. The overall technique requires 4–5 days for a 
positive identification. This method is suitable for food analysis in which more than 100 
cells of S. aureus bacteria are expected per gram. 

Biosensors offer several advantages over existing techniques that include reduced 
analysis time, high throughput screening, improved sensitivity, and real-time analysis 
(Jasson et al. 2010). The worldwide demand for biosensors to detect microorganisms is 
expected to grow from $6.72 billion in 2009 to $14.42 billion by 2016 (DiGregorio 
2010). The integration of nanotechnology into biosensors holds great promise for address-
ing the analytical needs of food diagnostic systems (Homola 2008; Sanvicens et al. 2009; 
Wu et al. 2013). Nanoparticles have raised great expectations in regard to generating 
enhanced signal-to-noise ratios, reducing response times, and use in multiplexed systems. 
Another advantage of nanoparticle-based technology is the detection of foodborne 
pathogens in unprocessed and complex food (Lin et al. 2005; Chen 2008; Lin et al. 2008; 
Zhu, Du, and Fu 2009; Pires et al. 2011; Wu et al. 2013; Tokel, Inci, and Demirci 2014). 

Among the nanomaterials used in biosensors are gold nanoparticles, which possess 
unique optoelectronic properties and provide high surface-to-volume ratios with 
biocompatibility using appropriate ligands (Park and Hamad-Schifferli 2010; Khan et al. 
2012; Sapsford et al. 2013; Soenen et al. 2015). The affinity of the surface of metallic gold 
nanoparticles for ligands includes thiols, disulfides, dithiocarbamates, and amines that 
allow bioconjugation with low-molecular-weight ligands (folic acid, thiamine, dimercapto-
succinic acid), polysaccharides (hyaluronic acid, chitosan, dextran, oligosaccharides, 
heparin), polyunsaturated fatty acids (palmitic acid, phospholipids), deoxyribonucleic acid 
oligomers, and proteins (transferrin, antibodies, lectins, cytokines, fibrinogen, thrombin) 
that make them scaffolds for the fabrication (Dang et al. 2005; Haiss et al. 2007; 
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Hun and Zhang 2007; Wampler and Ivanisevic 2009; Thanh and Green 2010; Saha et al. 
2011; Sapsford et al. 2011, 2013; Chai, Tian, and Cui 2012). The affinity-based 
streptavidin–biotin system has been used for several applications in bionanotechnology 
and biosensing (Thanh and Green 2010; Chen et al. 2013; Sapsford et al. 2013). 
Biotin has a strong and biospecific interaction with streptavidin (dissociation constant of 
10−15 M) and the association between biotin and streptavidin is rapid and unaffected by 
extremes of pH, organic solvents, and other denaturing agents (González et al. 1997; Katz 
1997; Waner and Mascotti 2008). 

There have been several reports on the use of gold nanoparticles to detect S. aureus. 
Some used the nonpolymerase chain reaction-based method, which measures the reson-
ance light-scattering signal of aptamer-conjugated gold nanoparticles to detect single S. 
aureus cell within 1.5 h (Chang et al. 2013). An analytical method based on the affinity 
nanoprobe-based mass spectrometry that enables detection of S. aureus in aqueous samples 
was also reported. The detection limit of S. aureus using this method is in the order of a few 
tens of cells (Lai et al. 2015). A gold nanoparticle-based colorimetric aptasensor for 
S. aureus using tyramine signal amplification has been reported. The limit of the method 
was 9 cfu/ml (Yuan et al. 2014). 

An immunochromatographic assay based on gold nanoparticles was developed for S. 
aureus. Processed food samples inoculated artificially with 0.9, 1.2, 2.4, and 6 cfu/g of 
bacteria yielded positive results in the immunochromatographic measurements with a total 
analysis time of 25 h (Huang 2007). Gold nanoparticles were used for the direct colori-
metric polymerase chain reaction detection of methicillin-resistant S. aureus in clinical 
specimens. The colorimetric assay used two gold nanoparticles probes functionalized with 
S. aureus 23S rRNA- and mecA-specific oligonucleotides with a detection limit of 500 ng of 
the target amplicon (Chan et al. 2014). In a recent paper, we reported the use of gold 
nanoparticles covered with protein A and functionalized with fluorescent antibodies to 
detect salmonella (Rios-Corripio et al. 2016). 

Here we describe the design of a fluorescent-nanoimmunosensor colloidal solution for 
the rapid identification of S. aureus. This system used colloidal gold nanoparticles conju-
gated with the labeled tetramethylrhodamine–streptavidin protein, linked to biotinylated 
anti-S. aureus antibodies. The biorecognition process used the fluorescent bioconjugate 
with the sample. Bacterial dilutions from 1 � 108 to 1 � 102 cell/ml of S. aureus were used, 
obtaining sensitivities of 1 � 105 cell/ml by photoluminescence and 1 � 102 cell/ml by 
bioimpedance measurements. 

Materials and methods 

Materials 

Tetrachloroauric acid trihydrate 99.5% precursor was from Sigma-Aldrich. The sodium cit-
rate dehydrate reducing agent was from J. T. Baker. The tetramethylrhodamine-conjugated 
streptavidin protein from Streptomyces avidinii was acquired from Sigma-Aldrich and was 
stored in pH 7.4, 0.01 M phosphate-buffered saline. Sodium chloride was purchased from 
Sigma-Aldrich. Anti-S. aureus antibody biotinylated was purchased from Abcam. The 
reference strain of S. aureus ATCC 25923 was donated from the Hospital Microbiology 
Laboratory and Community of Benemérita Universidad Autónoma de Puebla, México. 
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Bacteria preparation 

Staphylococcus aureus ATCC 25923 was cultured on brain heart infusion agar plaque 
(Bioxon de México S. A. de C. V.) and incubated at 37°C for 12 h. A single colony was 
transferred into a culture tube containing 5 ml of brain heart infusion broth and incubated 
at 37°C for 12 h. One milliliter of the bacterial culture was centrifuged at 10,000 rpm for 
10 min to obtain a pellet. The cells were washed thrice with sterile phosphate-buffered 
saline to remove residual medium and resuspended in 1 ml of phosphate-buffered saline. 
Bacterial serial dilutions were prepared for detection. The MacFarland scale was used as 
a standard method for the counting of bacteria. The concentration of bacteria in the initial 
brain heart infusion broth was estimated to be 12 � 108 cell/ml. Serial dilution was 
performed in sterile saline solution to 12 � 107–12 � 100 cell/ml. 

Instrumentation 

Ultraviolet–visible measurements were performed using an Evolution 606 Spectrophot-
ometer (Thermo Scientific). It was used to measure the surface plasmon resonance 
absorption band of single nanoparticles, conjugates (gold nanoparticle–streptavidin), and 
bioconjugates (gold nanoparticle–streptavidin–antibody). A Philips model Tecnai 10 trans-
mission electron microscope operated at 80 kV was used to characterize the shape and size 
of the gold nanoparticles and the streptavidin conjugate. A Carl Zeiss 710 confocal laser 
scanning microscope was used to obtain the images of S. aureus selectively identified by 
the bioconjugate. 

Bioimpedance measurements used a precision impedance meter (Agilent; Model 
4294A), which supplied a signal I cos (ωt) at 100 MHz. This system was adapted by gold 
electrodes positioned so that the electric circuit is closed through a sample of bacteria 
suspended in 150 µl. Measurements were obtained from 100 Hz to 100 MHz at 181 steps 
spaced logarithmically. 

Photoluminescence emission measurements were performed using the 375-nm exci-
tation line of a solid-state laser Spectra-Physics, with an exit power of 16 mW, through 
liquid samples in a quartz cell. The emission signal from the sample was introduced into 
a Horiba Jobin Yvon (iHR320) monochromator with a charged coupled device detector. 
The 420- and 512-nm long pass filters were used to remove the laser radiation. 

Synthesis of gold nanoparticles 
Gold nanoparticles were prepared by chemical reduction of tetrachloroauric acid trihydrate 
with sodium citrate dehydrate in water. The gold nanoparticles were synthesized because 
the citrate ions acts as the reducing, and capping agents. This method involved the prep-
aration of 1 ml of HAuCl4 at 4% in deionized water. A quantity of 0.5 ml of this solution 
was added to 200 ml of deionized water and brought to boiling with constant stirring. Once 
the sample was between 97 and 100°C, 3 ml of 1% sodium citrate were added and the 
solution began to darken and turn bluish gray or purple. After 30 min, the reaction was 
complete and the final color of solution was a deep wine red indicating that the colloidal 
solution of gold nanoparticles was obtained. After the solution was cooled, the gold nano-
particles were centrifuged at 3,500 rpm for 40 min, the supernatant was removed, and the 
nanoparticles were resuspended in 6 ml of deionized water. The obtained suspension was 
stored at 4°C until use. 
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Titration of gold nanoparticles with streptavidin 
A titration was performed to determinate the critical tetramethylrhodamine–streptavidin 
concentration for covering the surface of the gold nanoparticles with a full monolayer. 
The colloidal solution of gold nanoparticles was treated with increasing concentrations 
of streptavidin. After adding tetramethylrhodamine–streptavidin to the gold nanoparticles, 
10% NaCl was added. If most of the gold nanoparticles were still covered with citrate 
groups, then the negative charge of the gold nanoparticles was screened by Naþ and 
agglomeration of the colloid took place. This flocculation was accompanied by a color 
change of the solution. 

Preparation of the conjugate 

A measure of 30 µg/ml of tetramethylrhodamine-labeled streptavidin was the minimum 
concentration to cover the surface of the 10–20-nm gold nanoparticles. A measure of 
30 µl/ml of tetramethylrhodamine-labeled streptavidin was treated with 970 µl of gold 
nanoparticles, vortexed for 30 s, and incubated at room temperature for 4 min. The 
obtained conjugate was stored at 4°C until use. 

Preparation of the fluorescent bioconjugate 

A measure of 10 µg/ml of anti-S. aureus biotinylated antibodies was used to functionalize 
the surface of the fluorescent conjugate. The fluorescent conjugate was mixed with the 
biotinylated antibody in a 1:1 ratio and the bioconjugated nanoparticles were incubated 
at 37°C for 1 h. The resulting solution was centrifuged at 3500 rpm for 40 min and the 
supernatant was discarded. The solution was resuspended in water and stored at 4°C for 
the determination of S. aureus by fluorescence microscopy. 

Preparation of bacteria 

The fluorescent bioconjugate (colloidal solution) was mixed 1:1 with 1.2 � 109 cell/ml 
S. aureus. The fluorescent bioconjugate–bacteria were incubated at 37°C for 1 h to promote 
the labeling of the cell membrane of S. aureus with the fluorescent bioconjugate. A quantity 
of 5 µl of the obtained suspension was placed on slides to be analyzed by fluorescence. 

Results and discussion 

Ultraviolet–visible absorption spectroscopy of gold nanoparticles, the conjugate, 
and the bioconjugate 

Figure 1 shows ultraviolet–visible spectra of gold nanoparticles, the conjugate (gold nano-
particle–tetramethylrhodamine–streptavidin), and the bioconjugate (gold nanoparticle– 
tetramethylrhodamine–streptavidin–biotinylated antibodies). The spectrum of gold 
nanoparticles shows intense absorption at 520 nm, which is related with surface plasmon 
resonance. The spectrum of tetramethylrhodamine-labeled streptavidin protein shows 
three bands. The absorption at 280 nm is caused by the absorption of the aromatic amino 
acids tryptophan and tyrosine (Pace et al. 1995). The bands at 522 and 553 nm are 
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associated with the absorption of the chromophore tetramethylrhodamine that labels this 
protein (Pedone et al. 2010; Lin et al. 2013). 

For determining the concentration of protein that covers the surface of gold nano-
particles, 0–45 µg/ml of tetramethylrhodamine–streptavidin was introduced to the colloidal 
solution of gold nanoparticles (control) to gradually cover the surface. Once the gold nano-
particles were conjugated with the protein, the colloidal solution obtained was mixed in a 
1:1 ratio with 10% NaCl to promote the aggregation of nanoparticles that were not totally 
covered with the protein (Geneviève et al. 2007). This procedure is known as titration. 
Figure 2 shows the ultraviolet–visible spectra of the gold nanoparticles conjugated with sev-
eral concentrations of tetramethylrhodamine–streptavidin after mixing with NaCl. In the 
upper spectrum, gold nanoparticles (without streptavidin) show a broad absorption band 
from 700 to 800 nm due to aggregated gold nanoparticles caused by mixing with NaCl. 
Since the gold nanoparticles are initially covered with citrate molecules that have 
carboxyl groups, the negative charge of the gold nanoparticles is screened by Naþ and 
colloidal aggregation occurs. This aggregation is accompanied by a change of color of 
the solution to gray-purple. 

For concentrations between 5 and 45 µg/ml of tetramethylrhodamine–streptavidin, a 
superposition between the broad band associated with aggregated nanoparticles and the 
gold nanoparticle–streptavidin conjugate band is observed in the ultraviolet–visible 
spectrum. In addition, as the streptavidin concentration increases, the broad band from 
aggregation shifts to higher wavelength with a decrease in intensity. In the same way, as 
the concentration of streptavidin increases, the surface plasmon resonance absorption asso-
ciated with the gold nanoparticle–streptavidin conjugate increases in intensity. However, 
only the spectrum of the conjugate, which is similar to the surface plasmon resonance 
absorption of the corresponding spectrum of the gold nanoparticle control, was displaced 
by 5 wavenumbers. 

The spectrum of the conjugate includes the absorption of the bands at 522 and 553 nm 
from the chromophore tetramethylrhodamine of the streptavidin that overlap in the 

Figure 1. Ultraviolet–visible spectra of gold nanoparticles (control) and tetramethylrhodamine-labeled 
streptavidin protein.  
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ultraviolet–visible spectrum of each conjugate. As a consequence of the absorption of this 
chromophore, the linewidth of the surface plasmon resonance absorption of the conjugate 
(gold nanoparticle–streptavidin) was larger compared with the single gold nanoparticle 
control, due to damping caused by tetramethylrhodamine–streptavidin on the electronic 
cloud of gold nanoparticles (Sýkora et al. 2010). 

The spectra with the line shape most similar to the surface plasmon resonance band of 
the gold nanoparticle control and without aggregation were selected to provide the 
optimum concentrations of tetramethylrhodamine–streptavidin to form an adequate 
conjugate and provide stability to the gold nanoparticles. Therefore, the concentration 
interval of tetramethylrhodamine–streptavidin used to cover the surface of the gold 
nanoparticles was from 20 to 45 µg/ml. Under these conditions, stable conjugate particles 
capable of withstanding the interaction with NaCl were obtained. 

However, the first derivative of the ultraviolet–visible spectra of the conjugate prepared 
with tetramethylrhodamine–streptavidin concentrations from 0 to 45 µg/ml during the 
titration with NaCl highlights the main differences between the line shape of the surface 
plasmon resonance band of the gold nanoparticle control and the surface plasmon reson-
ance band of the conjugate at several tetramethylrhodamine–streptavidin concentrations 
following reaction with NaCl. Figure 3 shows the first derivative of the ultraviolet–visible 
spectrum of the gold nanoparticle control and gold nanoparticles conjugated with tetra-
methylrhodamine–streptavidin. The signal related with the single gold nanoparticle control 
includes two bands. The signals of the conjugates have different line shapes and higher 
bandwidths. In the absence of the protein, the gold nanoparticles aggregate because their 
surface is uncharged following reaction with NaCl, causing a distortion of the line shape 
in the first derivative spectrum. When the concentration of protein increases, the surface 

Figure 2. Ultraviolet–visible spectra of gold nanoparticles conjugated with several concentrations of 
tetramethylrhodamine–streptavidin during the titration.  
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of the gold nanoparticles is increasingly covered. When the concentration of protein is 
between 20 and 45 µg/ml, the colloidal solution does not aggregate in the presence of NaCl, 
and the line shapes of the first derivative spectra are similar to the controls and the red 
color of the colloidal solution remained. 

A sufficient concentration of protein (30 µg/ml) was used to prepare the conjugate gold 
nanoparticle–tetramethylrhodamine–streptavidin. The conjugate structure was functiona-
lized on the surface with biotinylated anti-S. aureus antibodies as described in the experi-
mental section. The affinity between the avidin and biotin occurs so that the constant 
region of the biotinylated antibodies is linked to the avidin of the protein, and the variable 
region of the antibodies is exposed to the outside. Figure 4 shows ultraviolet–visible spectra 

Figure 3. First-derivative absorbance of the ultraviolet–visible spectra of gold nanoparticles 
conjugated with tetramethylrhodamine–streptavidin (µg/ml).  

Figure 4. Ultraviolet–visible spectra of gold nanoparticles, the gold nanoparticles–tetramethylrhoda-
mine–streptavidin conjugate, and the gold nanoparticle–tetramethylrhodamine–streptavidin–antibody 
bioconjugate.  
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of gold nanoparticle control, the gold nanoparticle–tetramethylrhodamine–streptavidin 
conjugate, and the gold nanoparticle–tetramethylrhodamine-streptavidin–antibody bio-
conjugate. The surface plasmon resonance absorption of gold nanoparticles is centered 
at 520 nm, while the surface plasmon resonance for the conjugate is centered at 524 nm 
because of frequency damping caused by tetramethylrhodamine–streptavidin. The surface 
plasmon resonance absorption of the bioconjugate at 531 nm also results from the shift of 
the wavelength to higher wavelengths by the presence of the tetramethylrhodamine– 
streptavidin and the biotinylated antibody linked to this protein. 

Transmission electron microscopy 

Gold nanoparticles and the gold nanoparticle–tetramethylrhodamine–streptavidin conju-
gate were characterized by transmission electron microscopy. Figure 5a shows a typical 
image of the gold nanoparticles used in this work. The average size was between 10 and 
20 nm. Figure 5b shows a typical image of the conjugate, which is characterized by the gold 
nanoparticles covered by a layer of tetramethylrhodamine–streptavidin. The concentration 
of tetramethylrhodamine–streptavidin used to prepare this conjugate (30 µg/ml) was 

Figure 5. Transmission electron microscopy images of gold nanoparticles prepared by (a) citrate- 
reduction and the (b) conjugate obtained by titration with tetramethylrhodamine–streptavidin. The gold 
nanoparticles were covered with a layer of tetramethylrhodamine–streptavidin.  
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Figure 6. Confocal microscopy images of a cluster of Staphylococcus aureus recognized by the 
fluorescent bioconjugate described in this work: (a) dark-field, (b) clear-field, (c) the combination of both 
fields, and (d) the combination of several clusters at higher resolution.  

Figure 7. Three-dimensional integrated fluorescence from a cluster of S. aureus by scanning confocal 
microscopy. The microorganism was recognized by the fluorescent bioconjugate.  
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determined by the titration procedure described above. This protein layer serves to stabilize 
the particles in the colloidal state, promote an adequate attachment of the biotinylated 
antibodies during biofunctionalization, and produce the red fluorescence from the 
tetramethylrhodamine-chromophore. 

Confocal microscopy 

The fluorescent bioconjugate in colloidal form obtained in this work was directly analyzed 
by mixing with water treated with 105 cell/ml S. aureus. After mixing in a 1:1 ratio, an 
aliquot was characterized by scanning confocal microscopy. Figure 6 shows dark-field, 
clear-field, and the combination of both fields of a cluster of S. aureus. Figure 6d shows 
the combination of several clusters at higher magnification. In the dark field, the red 

Figure 8. Confocal microscopy images of the fluorescent bioconjugate reported in this work which 
selectively identifies S. aureus in the presence of E. coli: (a) dark-field, (b) clear-field, and (c) combination 
of both fields.  
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fluorescence due to the tetramethylrhodamine chromophore of the streptavidin suggests 
adequate recognition of this pathogenic microorganism by the bioconjugate. All images 
were from an internal focusing plane of the cluster by integrating the fluorescence from 
all focusing planes. A three-dimensional reconstruction of the cluster in Figure 6a is shown 
in Figure 7. 

Figure 8 shows images of dark, clear, and combined fields for S. aureus with Escherichia 
coli. Both types of bacteria are pathogenic microorganisms of interest. Fluorescence arising 
from the bioconjugate demonstrates selectivity for S. aureus. Only the surface of coccus was 
covered by the fluorescent biofunctionalized nanoparticle bioconjugate, unlike the E. coli 
bacilli which were not recognized by the bioconjugate. Interferences of the fluorescent 
bioconjugate with microorganisms depend on the cross reactivity of the antibody. The 
selectivity of the bioconjugate colloidal solution for S. aureus was favorable in the presence 
of pathogenic E. coli. However, this phenomenon needs to be further investigated to 
eliminate interferences with these bacteria and other Micrococcaceae species and to 
minimize nonspecific binding using different capture antibodies and blocking procedures. 

Figure 9. Confocal microscopy images of the fluorescent bioconjugate in the presence of E. coli with no 
recognition of bacilli by the bioconjugate: (a) dark-field, (b) clear-field, and (c) combination of both fields.  
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Figure 9 shows the negative control of this bioconjugate with E. coli. A quantity of 5 µl of 
the mixed bioconjugate–bacteria sample at 105 cell/ml was immobilized on slides. Micro-
graphs of dark, clear, and combined fields show no recognition of this bacillus by the 
fluorescent bioconjugate. Figure 10 shows the selective biorecognition of S. aureus in 
diluted milk that was treated with S. aureus and E. coli bacteria. The bioconjugate solution 
was mixed 1:1 with the contaminated milk. The resultant mixture was centrifuged and 
immobilized on slides to be analyzed by confocal microscopy. Micrographs of dark, clear, 
and combined fields show the recognition of S. aureus by the bioconjugate. Again, only 
coccus was recognized by the bioconjugate and covered by the fluorescent-functionalized 
nanoparticles. The tetramethylrhodamine fluorescence micrographs demonstrate the 
presence of this pathogenic microorganism. According to these findings, this methodology 
may be an easy and reliable approach to determine S. aureus in food. 

The fluorescent bioconjugate was mixed with water contaminated with S. aureus from 
1.2 � 108 to 1.2 � 105 cell/ml and passed through cellulose acetate membranes (0.22 µm). 
The permeated bioconjugate nanoparticles without links to S. aureus were characterized 

Figure 10. Confocal microscopy images of the fluorescent bioconjugate in milk contaminated with 
S. aureus and E. coli: (a) dark-field, (b) clear-field, and (c) combination of both fields. The selective 
recognition of the coccus of S. aureus is visible in all images.  
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by their photoluminescence. Figure 11 shows the photoluminescence spectra of the 
permeated fluorescent nanoparticles that serve as emission centers during laser excitation. 
The filtrated samples were analyzed in a quartz cuvette, including the bioconjugate 
colloidal solution as the control with the bioconjugate was assigned to be 1 � 100 cell/ml 
by approximation. No intrinsic photoluminescence of 1.2 � 108 cell/ml S. aureus was 
observed. An intense band at 574 nm from the tetramethylrhodamine of the streptavidin 
in the bioconjugate nanoparticles was present. After performing spectral normalization of 
the band at 521 nm from the quartz cuvette, a decrease of the photoluminescence intensity 

Figure 11. Photoluminescence spectra of the filtered bioconjugate nanoparticles. The retentate 
bioconjugate nanoparticles were linked to S. aureus at several concentrations of bacteria. The emission 
band at 574 nm is from the tetramethylrhodamine in the bioconjugate and is proportional to the 
bacteria concentration.  

Figure 12. Bioimpedance curves of water samples contaminated with concentrations of S. aureus from 
1.2 � 108–1.2 � 101 cell/ml.  
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was observed from the band at 574 nm with the bacteria concentration. Thus, for high- 
bacteria concentrations, few bioconjugated nanoparticles were obtained after filtration. On 
the other hand, for low-bacteria concentrations, the number of bioconjugated nanoparticles 
and photoluminescence increased after filtration. The sensitivity limit was 1 � 105 cell/ml. 

Figure 12 shows bioimpedance curves of water treated with 1.2 � 108–1.2 � 101 cell/ml 
S. aureus. All samples were mixed in a 1:1 ratio of the bioconjugate in the colloidal solution 
obtained in this work. Bioimpedance measurements as a function of frequency of the elec-
trical signal show two local maximum frequencies (not shown) at 100 and 199.5 Hz for 
S. aureus labeled with the bioconjugate. Using either frequency, a detection limit of 
1 � 102 cell/ml was obtained. The signal of the bioconjugate was assigned by approximation 
to 1 � 100 cell/ml. An exponential dependence from a semilogarithmic plot of impedance 
as a function of the bacteria concentration was observed. These results show that the 
concentration of S. aureus was determined using the bioconjugate reported in this work. 

Conclusion 

A colloidal fluorescent bioconjugate, which is based in the use of gold nanoparticles stabi-
lized with tetramethylrhodamine-labeled streptavidin and biofunctionalized with biotiny-
lated anti-S. aureus antibody, was used for the analysis of water and milk and provided 
good selectivity to the surface of S. aureus, as evidenced by confocal microscopy. Photolu-
minescence emission of filtered bioconjugated nanoparticles that were previously mixed 
with contaminated samples provided a direct measurement of the bacteria concentration 
with a detection limit of 1 � 105 cell/ml. Impedance measurements of contaminated sam-
ples with this bioconjugate also provided direct determination of the bacteria concentration 
with a detection limit of 1 � 102 cell/ml. This methodology may be an important alternative 
to determine pathogens in food. 
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