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Absalom Zamoranoa, César López-Camarillob, Esther Orozcoc, Christian Weberd,e,
Nancy Guillend,e, Laurence A. Marchata,∗
a ENMH-IPN, Programa Institucional de Biomedicina Molecular, Guillermo Massieu Heguera #239, Ticoman, CP 07320, México, D.F., Mexico
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1. Introduction

The knowledge of parasite genome sequences is an extraor-
dinary tool to identify and functionally characterize new genes
that are important for pathogen survival and host infection. It also
makes possible the determination of genes organization and the
detection of conserved cis-regulatory elements for gene expression.
Experimental characterization of 5′- and 3′-untranslated regions
(5′-UTR and 3′-UTR, respectively) successfully allows the identi-
fication of control sequences, but they are usually limited to a
small number of genes and specific contextual scopes. Moreover,
they often consider individual interactions without taking sur-
rounding sequences or factors into account. Computational analysis
of genomic, full-length cDNA and expressed sequence tag (EST)
databases represents an attractive alternative to detect conserved
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ly(A) tail at the 3′-end of messenger RNA (mRNA) is essential for nuclear
and transcription termination. Poly(A) tail formation involves multi-

t with specific sequences in 3′-untranslated region (3′-UTR) of precursor
have performed a computational analysis of a large EST and genomic
moeba histolytica, the protozoan parasite responsible for human amoebia-
nts that could be involved in pre-mRNA polyadenylation. Results evidenced
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olyadenylation site that is generally denoted by U residue and flanked by
-rich element. This predicted array was validated through the analysis of
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lyadenylation signal seems to be species-specific in protozoan parasites

s unique for the primitive eukaryote E. histolytica. To our knowledge, this
he identification of potential pre-mRNA 3′-UTR cis-regulatory sequences
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signals that can be important for the expression of numerous
genes.

Bioinformatics approach has been largely used to predict regu-
latory elements for precursor messenger RNA (pre-mRNA) 3′-end
polyadenylation (Beaudoing et al., 2000; Hajarnavis et al., 2004;
Loke et al., 2005) that is a crucial maturation step for most
eukaryotic mRNA, affecting stability, translatability, and nuclear-
to-cytoplasmic export (Zhao et al., 1999), representing therefore
an integral part of gene expression regulation. The polyadenylation
reactions involves about 25 nuclear proteins that recognize poly(A)
sequences in pre-mRNAs 3′-UTR and act in a coordinated way
to perform polyadenylation reaction (Proudfoot, 2004). In human
cells and yeast, the polyadenylation site (poly(A) site) is generally
flanked by the upstream polyadenylation signal (A(A/U)UAAA) and
the downstream U/GU-rich element. Additional U-rich and G/C-rich
elements are also associated with poly(A) site (Zhao et al., 1999;
Graber et al., 2002; Hu et al., 2005).

Entamoeba histolytica is the intestinal protozoan parasite
responsible for amebic colitis and liver abscess, which cause
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mortality in many developing countries (Jackson, 2000). The
sequencing of the parasite genome provides new insights into
the cellular workings and genome evolution of this major human
pathogen (Loftus et al., 2005). As a first step towards charac-
terizing 3′-UTR cis-regulatory sequences that could be important
for pre-mRNA 3′-end processing in E. histolytica, we performed a
small-scale in silico analysis of genomic regions and identified four
conserved motifs (López-Camarillo et al., 2005). Here, we extended
the computational analysis to a larger E. histolytica EST collection
and genomic sequences dataset and proposed a hypothetical array
of UA(U/A)UU, U-rich and A-rich elements in pre-mRNA 3′-UTR.
Finally, our model was validated by studying genomic sequences

and secondary RNA structures of E. histolytica genes with known
poly(A) site.

2. Materials and methods

2.1. Sequences selection

E. histolytica EST were selected from a set of 2348 raw cDNA
sequences obtained by retrotranscription of mRNA isolated from
the virulent HM1:IMSS strain. Briefly, cDNA sequences were gener-
ated by reverse transcription initiated by an oligodeoxythymidylate
primer, cloned into the TriplRx2M plasmid (Clontech) and auto-
matically sequenced (Weber et al., 2006). As the cloning strategy
was not oriented, sequences were searched for the presence of at
least ten A or T residues tracts that were assumed to correspond
to EST 3′-ends. For sequences with poly(T) tract, we obtained com-
plementary strands and inverted them, so that they were in sense
orientation. To eliminate sequences with internal poly(A) tracts
and make certain of working with 3′-ends, we selected sequences
having at least 400 nucleotides (nt) upstream the 10-A tract and
cut them to conserve the last 100 bases at the 3′-end. Finally,

Fig. 1. Nucleotide analysis of E. histolytica EST (A and B) and genomic (C and D) sequences.
are relative to potential poly(A) site and stop codon (position 0) in EST and genomic sequ
enthropy value and nucleotide content.
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sequences were checked for redundancy by intersequence com-
parisons. Any pair of sequences with identity greater than 90% was
considered as the same transcript and one was eliminated from the
data set. Therefore, assuming no errors, the 3′-end of the selected
EST sequences were considered as the poly(A) site.

Genomic sequences were obtained from E. histolytica
genome databases (http://www.tigr.org/tdb/e2k1/eha1/ and
http://www.sanger.ac.uk/Projects/E histolytica/). Loci were ran-
domly chosen throughout the parasite genome to retrieve nt
sequence of selected open reading frames (ORFs) including 3′-UTR.
This information was used to select DNA sequences corresponding
to 180 nt around the predicted stop codon in order to conserve 60

bases of ORF and 120 nt of 3′-UTR for each locus. Finally, sequences
were checked for redundancy as described above.

2.2. Sequences analysis of EST and genomic sequences

As we were looking for elements involved in pre-mRNA 3′-
end formation, T residues were substituted by U residues in
both EST and genomic sequences. Entropy and single nt fre-
quencies were determined using the bioinformatics tools of the
BioEdit biological sequences alignment editor (version 7.0.5.3)
(http://www.mbio.ncsu.edu/BioEdit/bioedit.html). To identify
potential cis-regulatory elements, we obtained all the strings of
size four, five and six, formed by A, C, U, G and N (where N is any nt)
and sequences were screened for all 4-nt, 5-nt and 6-nt words by
brute force string search to find those with the largest frequency. In
EST and genomic sequences, motifs position was expressed in rela-
tion to the poly(A) site and the stop codon, respectively, which were
arbitrarily fixed at position 0. Finally, we used the Quikfold program
at http://www.bioinfo.rpi.edu/applications/hybrid/quikfold.php
(Zuker, 2003; Markham and Zuker, 2005) to predict transcripts fold-
ing for genes with known poly(A) site using defaults parameters

(A and C) Entropy determination. (B and D) Single-nucleotide frequencies. Positions
ences, respectively. Discontinuous lines delimit domains characterized by similar
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(37 ◦C, 1 M [Na2+] and 0 M [Mg2+]); top free energy value was
considered to select the most probable structures.

3. Results

3.1. Identification of conserved regions in 3′-end of E. histolytica
cDNA sequences

The initial set of 2348 raw cDNA sequences was submitted to
successive filtering processes to select EST sequences whose 3′-end
was considered as the poly(A) site (position 0). The last 100 nt of
the resulting 512 cDNA sequences were then examined for infor-
mation content through the determination of entropy that is a
measure of the uncertainty associated with a random variable. In
this approach, information entropy is thought to provide data about
the amount of nt variability at each position relative to the poly(A)
site in the set of aligned sequences, allowing the measure of the
information content at each nt position in the alignment. As shown
in Fig. 1A, cDNA sequences could be roughly divided in two dis-
tinct regions. From −100 to −50 nt, entropy values were high (mean
value: 1.3286), indicating a lack of predictability at an aligned posi-
tion that is probably due to the fact that this region corresponds
to distinct ORF without any conserved motifs. In contrast, entropy
values decreased in the last 50 nt towards the poly(A) site (mean
value: 1.2887), indicating a higher information content. Remark-
ably, the entropy plot evidenced three windows spanning from
−50 to −25 nt (minimum value: 1.2449), −25 to −15 nt (minimum
value: 1.1592) and −15 nt to poly(A) site (minimum value: 1.1991),
respectively (Fig. 1A), that could correspond to three conserved
domains.

The 512 ESTs were then examined for single nt frequencies
at each position relative to the poly(A) site (Fig. 1B). Sequences
upstream the poly(A) site generally presented an AU-rich content,
with an average A and U residues frequency around 37% and 32%,
respectively. A detailed examination of curves revealed four distinct
regions: from −100 to −50 nt, nt content was almost constant; from
−50 to −25 nt, the abundance of A increased, whereas the U content
was kept almost unchanged and GC content decreased; from −25 to
−15 nt, sequences displayed a combination of A and U residues that
could correspond to the UA(A/U)UU polyadenylation signal; and the
last 15 nt-region preceding the poly(A) site exhibited a clear peak of
U residues. Finally, the last nt at 3′-end was a U residue in more than
40% of EST sequences, suggesting that it is the preferred poly(A) site

(Fig. 1B). Interestingly, these four regions were in agreement with
those previously determined from the information content analysis
(Fig. 1A), confirming their significance.

3.2. Identification of conserved regions in 3′-end of E. histolytica
genomic sequences

363 distinct loci were obtained from the parasite genome
databases and filtered before evaluating information content and
single nt frequencies throughout a180 nt-region around the pre-
dicted stop codon (position 0) (Fig. 1C). Entropy profile confirmed
the existence of differences between codifying and not codi-
fying regions, the mean entropy value being higher (1.2609)
in the 60 nt region upstream the stop codon than in the last
120 nt (1.1549). This confirmed the lack of predictability at an
aligned position in distinct ORF and indicated an higher informa-
tion content in 3′-UTR. Interestingly, entropy values dramatically
decreased down to 0.04786 at position 0, in agreement with the
relevance of the stop codon. Although the entropy plot did not
evidence any specific regions with high information content in
3′-UTR, values were lower throughout the first 60 nt, suggest-
and Chemistry 32 (2008) 256–263

Table 1
Classification of EST sequences according to the number of consensus UAAUU and
UAUUU polyadenylation signals

White cell, sequences without any consensus polyadenylation signal; light grey cell,
sequences with a single consensus polyadenylation signal; dark grey cell, sequences
with multiple consensus polyadenylation signals.

ing the presence of informative elements near the stop codon
(Fig. 1C).

Next, we examined the same genomic sequences for single nt
frequencies at each position relative to the stop codon (Fig. 1D). The
AU content was higher in 3′-UTR (81%) that in coding regions (70%)
as previously reported (López-Camarillo et al., 2005). After the stop
codon, we observed a short strength of AU residues (4–10 nt) fol-
lowed by a 50-nt region with a disproportionate frequency of U
residues, whereas there was a combination of AU residues and a low
GC content throughout the last 60 nt. Remarkably, the A-rich region
previously identified from EST analysis was detected upstream the
stop codon showing that it did not correspond to a 3′-UTR con-
served motif but was located inside codifying sequences (Fig. 1D).
Based on results obtained from EST and genomic DNA sequences
analysis, we proposed that potential regulatory elements could be
located in the 25 nt-region upstream the poly(A) site and in the
60 nt-region downstream the stop codon.

3.3. Identification of conserved elements in 3′-end of E. histolytica
cDNA sequences

In order to identify the conserved motifs located before the
poly(A) site, we searched for the most representative words located
in the last 25 nt of the EST collection. We initially focused on 5-
nt motifs because the only reported 3′-end processing element

in E. histolytica is the consensus UA(U/A)UU polyadenylation sig-
nal (Bruchhaus et al., 1993) (Table 1). A single UAAUU or UAUUU
motif was present in 136 (27%) and 57 (11%) sequences, respec-
tively. 68 (13%) sequences presented various UA(U/A)UU motifs,
while 252 (49%) sequences did not present UAAUU nor UAUUU
motifs.

When we analyzed the global frequency score of the top-10
motifs present at least once in the EST set (Fig. 2A), the UAAUU sig-
nal appeared at the 2nd place, whereas the UAUUU motif was at the
13th place (Supplementary Fig. 1). Other recurrent pentamers, such
as UUAUU (7th) and AAUUU (9th), could be variants of the reported
polyadenylation signals with a single nt changed. The other AU-rich
motifs (UUAAU, AUUAA and AAUUA), have more than one substitu-
tion. The UUUUU word appeared as the most global common motif,
in agreement with the high U content in EST sequences. Consider-
ing that words with 4 o 5 U residues are U-rich motifs, we proposed
that UUAUU (7th), AUUUU (8th) and UUUUA (10th), together with
the UUUUU pentamer, could contribute to the formation of the U-
rich region identified in Fig. 1B. Although its high abundance, the
AAAA motif (4th) was not considered as relevant since it is the only
A-rich word detected (Fig. 2A and Supplementary Fig. 1). Analysis of
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Fig. 2. Identification of the ten most abundant pentamers in E. histolytica EST (A and B)
D) Position. Star, conserved UA(U/A)UU polyadenylation signal. Positions are relative to
respectively.

4-nt and 6-nt words occurrence frequencies did not identify other
relevant motifs (data not shown).

We next analyzed the relative position of the most represen-
tative 5-nt words identified above (Fig. 2B). Interestingly, AU-rich
motifs were centered on −18 to −16 nt positions, excepted the
UUAAU motif that clustered with U-rich motifs around −13 to −9 nt
positions. Both regions matched with those previously identified
(Fig. 1A and B).

3.4. Identification of conserved elements in 3′-end of E. histolytica
genomic sequences

To characterize 3′-UTR after the poly(A) site, we searched for the
most representative 5-nt words in the 60 nt region downstream
the stop codon in genomic sequences (Table 2). A single consen-

Table 2
Classification of genomic sequences according to the number of consensus UAAUU and U

White cell, sequences without any consensus polyadenylation signal; light grey cell, sequ
dark grey cell, sequences with multiple consensus polyadenylation signals.
and genomic (C and D) sequences. (A and C) Global occurrence frequency. (B and
potential poly(A) site and stop codon (position 0) in EST and genomic sequences,

sus polyadenylation signal, UAAUU or UAUUU, was detected in
46 (13%) and 69 (19%) sequences, respectively. Multiple consen-
sus polyadenylation signal were detected in 188 (52%) genomic
sequences, whereas 61 (17%) genes did not have UAAUU nor UAUUU
motifs.

Analysis of the global frequency score of the top-10 motifs
present at least once in genomic sequences (Fig. 2C), showed that
the consensus UAUUU and UAAUU motifs appeared at the 5th and
10th place, respectively. The UUAUU motif that was proposed above
to be a variant of the consensus polyadenylation signals with a
single nt changed, was at the 4th place, whereas the other recur-
rent AU-rich motifs with various substitutions, UUUAA and UUAAU,
were at the 7th and 9th position, respectively. The UUUUU word
(1st) together with other U-rich words, UUUUA, AUUUU, UUAUU,
UAUUU and UUUAU (2nd–6th place), contributed to the high U

AUUU polyadenylation signals

ences with a single consensus polyadenylation signal;
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(1998), Ramos et al. (1997), Riahi et al. (2004), Rodriguez et al. (1996), Sanchez and
and Wostmann et al. (1992))

content of 3′-UTR. Although it is the only A-rich element detected
among the top-10 motifs, we considered the AAAAA motif (8th)
as relevant since other A-rich words were detected in the top-20
motifs (Supplementary Fig. 2). The search for 4-nt and 6-nt words
did not identify other relevant motifs in genomic sequences (data
not shown).

The most representative 5-nt words described above were all
located throughout a 9-nt region (Fig. 2D): AU-rich motifs clustered
from 26 to 29 nt position, overlapping with the U-rich elements
that were centered on 28–29 nt position. The AAAAA pentamer is
the more remote motif, being around the 35 nt position.

3.5. Detection of predicted cis-regulatory elements in E.
histolytica genes with known poly(A) site
Results obtained from the computational study of EST and
genomic sequences were assessed by a complementary analysis
of 3′-end region from 19 E. histolytica genes with known poly(A)
site (Fig. 3). The consensus polyadenylation signal UA(A/U)UU (or
variant with one nt changed) was detected 8–25 nt upstream the
poly(A) site in all sequences, excepted in the Ehserp gene. Interest-
ingly, it was included in stop codon in four genes. The poly(A) site
was denoted by the U residue in 11 genes. In 15 genes, it was sur-
rounded by U-rich motifs (0–7 nt upstream and 0–9 nt downstream
the poly(A) site). Finally, the novel A-rich region identified in this
work was present at 9–44 nt downstream the poly(A) site in 95% of
the sequences.

3.6. Predicted secondary structures of 3′-end regions from E.
histolytica genes

We explored the formation of higher order structure for E.
histolytica transcripts with known poly(A) site using the Quik-
fold program (Zuker, 2003; Markham and Zuker, 2005) (Fig. 4).
For analysis purposes, the input was a 400-nt region where the
poly(A) site was at the 300 nt position. Interestingly, secondary
lly determined poly(A) site. The conserved motifs predicted by our in silico analysis
h tract; blue, A-rich tract. Sequence before the poly(A) site is in lowercase letters,
east four U and A residues were considered as U- and A-rich elements, respectively.
rder to shorten DNA sequences and evidence the conserved motifs. References for
is figure legend, the reader is referred to the web version of the article.) (see refs.
Huber et al. (1988), Leippe et al. (1992), López-Camarillo et al. (2003), Nozaki et al.
r (1998), Sanchez et al. (1994), Tachibana et al. (1991), Tannich et al. (1991a, 1991b)

structures corresponding to a minimal free energy value (from
−56.2 to −82.8 kcal mol−1) could be clustered into two previously
reported groups (Loke et al., 2005): the poly(A) site was located
on a cluster of stem loop structures in 53% of transcripts (group I,
represented by the Ehtub gene), whereas it was on or around the
stem loop, but not flanked by a cluster of secondary structures, in
47% of transcripts (group II, represented by the Ehadh3 gene). Con-
sequently, the stem loop structures found around the poly(A) site
were obtained from base pairing of adjacent regions that contain
cis-regulating elements for mRNA 3′-end formation (Fig. 4).

4. Discussion

In eukaryotic cells, mRNA polyadenylation is an important gene
expression control point that depends on trans-acting factors inter-

acting with specific 3′-UTR cis-acting elements. Considering that
it is possible to predict regulatory elements based on their con-
served position and nt content in a large set of sequences, several
groups have reported the in silico identification of conserved ele-
ments that could be involved in mRNA poly(A) tail formation in A.
thaliana (Loke et al., 2005), H. sapiens (Hu et al., 2005) and S. cere-
visiae (Graber et al., 2002). To our knowledge, the present paper is
the first report about the prediction of pre-mRNA 3′-UTR regulatory
sequences in a protozoan parasite.

Our analysis of E. histolytica EST sequences evidenced that the
last 25-nt region upstream the poly(A) site contains a AU-rich
domain corresponding to the consensus UA(A/U)UU polydenyla-
tion signal or variants, followed by a U-rich region preceding the
poly(A) site that is generally characterized the U residue. Data
obtained from genomic sequences showed that the AU-rich region
is located downstream the stop codon and upstream the poly(A)
site, and evidenced the presence of a novel A-rich element that is
located after the poly(A) site. Analysis of E. histolytica genes with
known poly(A) site confirmed this hypothetical array and suggested
that the U-rich region could surround the poly(A) site. The fact
that the polyadenylation signal was included in the stop codon in
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Fig. 4. Representative secondary structure predictions. For each gene with known poly(A
was analyzed with the DINAMelt server (Markham and Zuker, 2005). Group I, PS is locat
but it is not flanked with a cluster of secondary structures. 5′- and 3′-ends are indicated.

several genes may support the hypothesis that the stop codon is
the polyadenylation signal ancestor, dividing the codifying and not
codifying genetic regions.

The molecular organization of pre-mRNA 3′-end processing sig-
nals is roughly conserved through evolutionary scale (Fig. 5). E.
histolytica presents a U-rich region preceding the poly(A) site, as
in plants, human and yeast. Moreover, we detected another U-rich
tract downstream the poly(A) site, as in plants, human, yeast and
T. vaginalis. In addition, distances between each motif are in the
same range in all organisms. Remarkably, the novel A-rich region
downstream the poly(A) site, seems to be unique for E. histolytica
transcripts. Interestingly, the polyadenylation signal is the con-

Fig. 5. Comparison of pre-mRNA 3′-UTR processing signals through evolutionary scale. DS
poly(A) site. References are indicated at the right.
) site (PS), a RNA fragment of 400 nt (where the poly(A) site was at position 300)
ed on a cluster of stem loop structures; Group II, PS is on or around the stem loop,

served A(A/U)UAAA hexanucleotide in plants, animals and yeast,
whereas it appears to be specie-specific in the few protozoan par-
asites studied, corresponding to AGU(A/G)AAA in Giardia lamblia
(Peattie et al., 1989; Que et al., 1996), UAAA in T. vaginalis (Espinosa
et al., 2002), AUUAAA in the Plasmodium pgs28 gene (Cann et al.,
2004) and UA(A/U)UU in E. histolytica (Bruchhaus et al., 1993).

The high incidence of the canonical polyadenylation signal
UA(A/U)UU in EST and genomic sequences, confirmed the func-
tional relevance of this motif for pre-mRNA polyadenylation.
The detection of UA(A/U)UU variants suggested that the core
polyadenylation machinery of E. histolytica (López-Camarillo et
al., 2005) could be able to interact with different polyadenyla-

E, downstream element; EE, efficiency element; FUE, far-upstream element; Arrow,
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tion signals. In human, CPSF160 binding to the consensus AAUAAA
polyadenylation signal is stimulated by CstF, indicating that
CPSF160 alone could be able to recognize divergent polyadenylation
signals (Wilusz et al., 1990). The U1-snRNP A-protein (Gunderson
et al., 1998; Lou et al., 1998) and hnRNP-F/H (Veraldi et al., 2001)
proteins have been reported as modulators of polyadenylation, reg-
ulating the selection of the consensus polyadenylation signal by the
core polyadenylation factors. The presence of multiple polyadeny-
lation signals in several sequences also suggested that the use of
distinct polyadenylation signal could be an important regulatory
event for E. histolytica gene expression. Additionally, our data sug-
gested the existence of UA(A/U)UU-independent polyadenylation
processes in E. histolytica, adding more complexity to mRNA 3′-end
formation mechanism in this protozoan pathogen.

The prediction of RNA secondary structure by energy minimiza-
tion was used to explore the topological association with functional
signals. E. histolytica transcripts folding brings regulatory sequences
closer together, probably facilitating interactions between the dis-
tinct factors of the pre-mRNA 3′-end processing machinery to
perform the polyadenylation reaction. In other organisms, it has
been reported that mutations in poly(A) signal reduced polyadeny-
lation efficiency (Mogen et al., 1990; Rothnie et al., 1994), which
was associated with structural changes in mRNA folding (Loke et al.,
2005). Therefore, structural studies of RNA–protein interactions are
of particular interest to understand the pre-mRNA 3′-end cleavage
and polyadenylation process.

The present study showed the useful of computer-based meth-
ods to determine sequences with a potential role in biological
process. Our data will contribute to the understanding of gene
expression regulation in E. histolytica, providing new insights into
pre-mRNA 3′-end polyadenylation mechanisms in this pathogen.
The functional relevance of E. histolytica sequence elements iden-
tified here is currently under experimental investigation.
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