
D
ow

nloaded
from

https://journals.lw
w
.com

/bloodcoagulation
by

BhD
M
f5ePH

Kav1zEoum
1tQ

fN
4a+kJLhEZgbsIH

o4XM
i0hC

yw
C
X1AW

nYQ
p/IlQ

rH
D
3dW

0s7N
5C

LiZEbdQ
lD
aVtXf7sf0sxym

qU
M
M
Em

cup8hh175G
p3G

M
acsQ

==
on

07/06/2018

Downloadedfromhttps://journals.lww.com/bloodcoagulationbyBhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3dW0s7N5CLiZEbdQlDaVtXf7sf0sxymqUMMEmcup8hh175Gp3GMacsQ==on07/06/2018

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

Platelet cytoskeleton and its hemostatic role
Doris Cerecedo

Upon vascular injury, platelets adhere to the exposed

extracellular matrix, which triggers the platelet

activation and aggregation to form a hemostatic

plug to seal the wound. All of these events involve

dramatic changes in shape because of the

cytoskeleton reorganization. The versatility of the

cytoskeleton’s main elements depends on the

biochemical nature of the elements, as well as on

the associated proteins that confer multiple

functions within the cell. The list of these

associated proteins grows actively, increasing our

knowledge concerning the complexity of platelet

cytoskeleton machinery. The present review

evidences the recently described platelet proteins

that promote characteristic modifications in their

cytoskeleton organization, with special focus on the

dystrophin–glycoprotein complex. Blood Coagul

Fibrinolysis 24:798–808 � 2013 Wolters Kluwer Health |

Lippincott Williams & Wilkins.
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Introduction
Platelets are small, heterogeneous, anucleated fragments

derived from megakaryocytes in the bone marrow. Plate-

lets are involved in inflammation, act against microbial

infection, and promote tumor metastasis; however, their

main role is stopping bleeding after the loss of integrity of

a blood vessel. On exposure to damaged endothelium,

platelets slow their speed and tether to the extracellular

matrix (ECM) components; therefore, these thrombo-

genic proteins trigger platelet activation.

Resting platelet cytoskeleton is formed by filamentous

actin (F-actin), a marginal ring of microtubules, inter-

mediate filaments, and binding proteins. During the

activation and adhesion process, cytoskeletal elements

are reorganized; actin filaments form part of filopodia,

lamellipodia, focal adhesions, stress fibers, and the con-

tractile ring. Microtubule ring fragments disperse,

whereas intermediate filaments are associated with the

plasma membrane and the granulomere.

The dystrophin–glycoprotein complex (DGC) is a

group of cytoskeletal proteins that establish communi-

cation between the ECM and the actin cytoskeleton.

This complex was initially described in muscle cells. To

date, the DGCs, composed of dystrophins and utro-

phins as central axes, have been described in kidney,

lung, central nervous system, and liver. In blood tissue,

their presence has been described in neutrophils

and stem progenitor cells and, especially in platelets,

both of these complexes are intimately associated

with microfilaments, microtubules, and intermediate

filaments, and participate in a very special manner

during the adhesion process, forming stress fibers, focal

adhesions, and granule trafficking. In addition, they are

involved in the maintenance and organization of mem-

branous systems, promoting their initial anchoring to

the substrate. The purpose of this article was to review

the evidence relating to the dynamism of the platelet

cytoskeleton with an emphasis on its association with

the DGC, discussing their feasible molecular inter-

actions that mediate their participation in the hemo-

static role of platelets.

Ultrastructure of resting, activated, and
adhered platelets
The adhesion of circulating blood platelets to the sub-

endothelial matrix that is exposed upon vessel wall injury

represents the initial event of the hemostatic process

required to limit hemorrhage. Recruitment of additional

platelets into the growing thrombus allows platelets to

aggregate, providing a hemostatic platelet plug that

involves the elements of cytoskeletal reorganization,

including cytoplasmic actin filaments and a membrane

skeleton located immediately below the plasma mem-

brane and that consists of both actin filaments and micro-

tubules [1].

Platelet actin cytoskeleton
Actin is a highly conserved globular protein with a

molecular weight of 42 kDa. In living cells, actin poly-

merizes to form F-actin with a mean diameter of approxi-

mately 8 nm, which is comprised of two helical

protofilaments of globular actin (G-actin) subunits wound

around each other, having a pseudo-repeat distance of

36 nm and comprising 14 monomers [2]. Upon activation,

there is extensive rearrangement of the cytoskeleton; the

proportion of total actin in filaments increases rapidly

from 30 to 70% [3].
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Actin polymerization drives the extension of dynamic

cellular structures such as filopodia and lamellipodia,

thereby powering cell movement [4], whereas more

stable, actin networks form static cellular structures such

as stress fibers and contractile rings that function in cell

adhesion and cell division, respectively [5,6].

Activation of platelet in suspension or spread on glass

produces a reproducible sequence of the morphologic

events such as rounding, filopodial projection, attachment,

spreading, and, ultimately, contraction [7,8]. After the

platelet adheres to the flat surface, its round shape changes,

becoming spherical and slightly smaller as a result of a

contractile event. Filopodia projection follows rounding

(<1 min) by the burst of dynamic surface protrusions

denominated pseudopodia, which can extend and retract;

some of these pseudopodia remain as filopodia [9].

Filopodia are highly dynamic, actin-rich cell-surface

protrusions that extend mainly from the periphery of

the cell and aid cells to sense their external environment.

Cdc42 is the well known factor that triggers filopodia

formation [10], inducing actin nucleation at the barbed

end of the filopodia, mediating cooperation between

Wiskott–Aldrich syndrome protein (WASP)/neuronal

WASP (N-WASP) and actin-related protein 2/3 (Arp2/3)

[11]. Recently, it was established that Cdc42 also parti-

cipates in platelet aggregation, determining granular

secretion and demonstrating that Cdc42 is essential for

normal platelet function [12].

The filopodia of activated platelets contain barbed-end

actin assembly, whereas the structure of actin in lamella

revealed that this is a tight, orthogonal branched network.

However, prevention of the usual rise in cytosolic calcium

accompanying platelet activation inhibited the formation

of lamellipodial, but not filopodial, indicating that these

actin structures are functionally and morphologically

different [13].

The lamellipodium is a broad and flat network of actin

filaments with many microns along its length and width,

but only approximately 0.1–0.2 mm high [4,14]. Within

the lamellipodium, the actin cytoskeleton forms a tread-

milling dendritic array [15,16], in which the nascent

filaments nucleate from Arp2/3 complexes, the major

regulator of platelet actin dynamics and responsible for

the formation of filopodia and lamellipodia [17]. ADF/

cofilin action coupled with adenine triphosphate (ATP)

hydrolysis facilitates actin filament disassembly, recy-

cling the monomers to the leading edge. Actin filaments

in the lamellipodium are oriented with their barbed ends

toward the leading edge [15], and this arrangement is

crucial for maintaining the lamellipodial structure.

In-vivo experiments have shown that actin filament turn-

over comprises a critical step in the terminal phase of

platelet formation, as well as in the maturation and sizing

of early platelets for producing the homogeneous mature

platelet population [18].

Lamellipodia can form from the lateral membrane

between pseudopodia or from the sides of pseudopodia,

extending slowly with frequent pauses accomplishing

in the first 8–10 min. Further reorganization of the

cytoskeleton occurs and adhesion plaque proteins, such

as vinculin or vasodilator-stimulated phosphoprotein

(VASP), are incorporated into the system [19,20]. Platelet

adhesion to glass triggers the shape changes, which

involve organization of actin filaments on four distinct

actin filament structures that are formed at the following:

filopodia, lamellipodia, a contractile ring, and stress

fibers, each containing a different complement of

actin-binding proteins [21].

Actin nodules represent a novel actin structure composed

of punctate areas of actin, first observed at the onset of

lamellipodia formation within platelets spread on

multiple matrix proteins. It is proposed that they form

during the early stages in actin polymerization and that

they play an important role in driving the formation of

later actin structures, including lamellipodia, and that

they possibly contribute to stress fiber formation [22].

In platelets, as in many cells, the protrusive appendages

consist of two overlapping, but molecularly and function-

ally distinct, actin networks denominated the lamellipo-

dium and the lamella [23]. The lamellipodium assembles

at the leading edge, but within a few microns disassem-

bles, coupling to a second network, the lamella, where

myosin contraction is integrated with substrate adhesion

[24].

Platelets regulate their spreading and morphology

depending on the environmental geometry affecting

the reorganization of its cytoskeleton in response to

the geometrical constraints of the microenvironment

[25], as has been shown for nucleated mammalian cells

[26]. This evidence shows that the molecular machinery

for platelet adhesion and spreading is strikingly similar to

that in other motile cells [27].

Finally, to mediate the subsequent contraction of the

clot, platelet contraction reaches a steady state after

25 min, exerting total forces of approximately 34 nN

[28]. To perform these clot contractions, further struc-

tural rearrangements occur, recruiting cytoplasmic and

membrane proteins, promoting polymerization of actin,

and organization of filaments into higher order structures

such as stress fibers.

Stress fibers are composed of bundles of actin filaments

and myosin II, and allow nonmuscle cells to apply con-

tractile forces. Early work identified a-actinin and myosin

as dynamically redistributed and segregating alternately

on the actin of the cell body in fully spread platelets

during the adhesion process [29], with RhoA as a crucial

regulator of actin stress fiber formation [30]. There are

other key elements working cooperatively: the PI-3

kinase/RhoA/mDia1 axis, which is a critical pathway

Platelet cytoskeleton and its hemostatic role Cerecedo 799
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for coupling thrombin signaling to actin cytoskeletal

remodeling during platelet spreading [31].

Integrins expressed in the platelets are the major class of

the ECM receptors responsible for cell adhesion because

they are both structurally and functionally linked with the

actin cytoskeleton [32,33], as well as with integrin-associ-

ated proteins such as talin and vinculin [34–36]. Elegant

studies in which the vinculin gene has been deleted

has led to conclude that vinculin did not disturb the

physiological responses depending in part on aIIbb3 and

F-actin, suggesting that other proteins can substitute or

compensate for vinculin in its absence [37].

Integrin activation is achieved by a series of inside-out

signaling events culminating in the binding of two key

integrin activators: the talin head domain and kindling.

Agonist-induced activation of platelet integrins is depen-

dent on the talin–integrin interaction, which is necessary

for fibrin clot retraction [38]. Kindlin is the most recently

identified integrin activator; in platelets, kindlin-3 is the

main functional isoform required for integrin-mediated

responses binding to the b-cytoplasmic tails, which is

needed for affinity modulation of the integrin [39,40]. Its

absence causes severe bleeding and the immune disorder

in human [41,42].

Platelet microtubule cytoskeleton
After their liberation from the megakaryocytes in the

bone marrow, platelets circulate in the blood stream for

about 10 days with a discoid shape whose size ranges from

1.5 to 4.5 mm [43]. This shape is because of a marginal

ring of microtubules situated immediately beneath the

plasma membrane [44–46].

The platelet marginal band is composed nearly entirely

of microtubules. Microtubules are polymers of a-tubulin

and b-tubulin dimers that associate into linear arrays

called protofilaments, which laterally associate, forming

the hollow rigid tubular structure characteristic of micro-

tubules. The bulk of b-tubulin within the microtubule

coil is composed of b1-tubulin, a divergent b-tubulin

isoform exclusive to megakaryocytes and platelets

[47,48].

Recently, in an elegant study by Patel-Hett et al.
[49], microtubule dynamics was evaluated in living

platelets and observed that the marginal band of micro-

tubules is composed of multiple, bipolar dynamic micro-

tubules arising from a single stable microtubule arranged

in a coil. The dynamism of microtubules provides the

platelet with the ability to alter its cytoskeleton during

physiological processes, such as shrinking its coil during

platelet aging and the formation of a radial microtubule

array that reaches into the forming filopodia during

activation and adhesion.

RanBP10 is a cytosolic protein with binding capacities for

both b-tubulin and the small GTPase Ran; it decorates

microtubule filaments in megakaryocytes and platelets

[50], and might convert cytoplasmic Ran-GDP into Ran-

GTP, providing information for microtubule nucleation

or other filament properties [51]. In platelets, RanBP10

plays an essential role in hemostasis and in maintaining

the microtubule dynamics with respect to both platelet

shape and function [52].

Characterization and intracellular distribution
of the dystrophin–glycoprotein complex
The Duchenne muscular dystrophy (DMD) gene, whose

sequence comprises more than 79 exons, code for a

427-kDa skeletal muscle protein of 3685 residues named

dystrophin (Dp427) [53]. Internal promoters in the DMD
gene codify for the expression of short dystrophin pro-

ducts of 260 kDa (Dp260), 140 kDa (Dp140), 116 kDa

(Dp116), and 71 kDa (Dp71) [54–58]. Dp71 (70–75 kDa)

is the major dystrophin expressed in nonmuscle cells and

its transcripts are alternatively spliced in exons 71–74 and

in exon 78 to produce multiple products of 70–78 kDa.

Differential splicing of Dp71d exon 78 produces at least

two Dp71 isoforms: the Dp71d, which preserves the

C-terminal end of Dp71, and the Dp71f (for Dp71

founder sequence), corresponding to the removal of exon

78. Two other transcripts, Dp71D110
a and Dp71D1110

m,

respectively, were characterized as the gene products

resulting from alternative splicing at exons 71–74 and

78 [59]. Furthermore, the alternative gene codes for full-

size utrophin Up400 (400 kDa), Up140 (140 kDa), and

Up71 (70 kDa) [60,61]. Dystrophin is one of a number of

large cytoskeleton-associated proteins that connect

among various cytoskeletal elements, providing connec-

tions between a transmembrane complex known as the

DGC and the underlying cytoskeleton [62]. The most

established connection, and possibly the most important,

is that connected to F-actin, but more recent evidence

has been forthcoming of connections to membrane phos-

pholipids, intermediate filaments, and microtubules

[63–65]. The DGC is made up of dystroglycans, sarco-

glycans, dystrobrevins, syntrophins, and sarcospan, which

are grouped into three subcomplexes: the dystroglycan

complex, the sarcoglycan complex, and the dystrobrevin/

syntrophin complex [66,67].

The dystroglycan subcomplex consists of a-dystroglycan

and b-dystroglycan subunits, which are encoded as a

single polypeptide of 895 amino acids transcribed from

the DAG1 gene, which undergoes posttranslational

proteolytic cleavage to yield the two noncovalently

associated subunits [68]. a-Dystroglycan is an extensively

glycosylated extracellular protein [67,69,70] that med-

iates binding to laminin and laminin G-like domains of

perlecan, agrin, neurexin, and pikachurin [71–74], and

proper glycosylation is essential to dystroglycan function

[75,76]. b-Dystroglycan is a single-pass transmembrane

protein with a largely unstructured amino-terminal

extracellular domain that binds to the carboxy-terminal
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globular domain of a-dystroglycan [77], and its carboxy-

terminal cytoplasmic domain binds dystrophin [78].

Transmembrane localization of dystroglycan constitutes

a link between the intracellular actin cytoskeleton and

the ECM, and clearly defines dystroglycan as an adhesion

molecule. Although dystroglycan possesses no apparent

intrinsic ability for transducing adhesion-mediated sig-

nals, adhesion-like receptors, such as integrins, both

inside-out and outside-in signaling, are mediated via

signaling molecules that associate with its adhesion

receptor. The cytoplasmic domain of b-dystroglycan is

associated with rapsyn and the Ras/MAPK signaling

pathway through the adapter protein Grb2 [79–81].

The sarcoglycan complex is composed of a-sarcoglycan,

b-sarcoglycan, g-sarcoglycan, and d-sarcoglycan isoforms,

each encoded by a separate gene [82–84], and sarcospan

[85]. All sarcoglycans are single-pass transmembrane

glycoproteins with long extracellular domains and rela-

tively short cytoplasmic domains. Sarcospan encodes four

transmembrane-spanning segments that are homologous

to the tetraspanin family of proteins [85], which are

thought to mediate interactions among transmembrane

proteins.

Dystrobrevins and syntrophins are two families of cyto-

plasmic proteins encoded by multiple genes expressed in

a tissue-specific manner [86–88] that interact directly

with dystrophin [89–91]. The syntrophin family of

proteins comprises five members: a-syntrophin; b1 and

b2 syntrophin, and g1 and g2 syntrophin [92]. All syn-

trophins share one domain unique to syntrophins: a

postsynaptic density protein of 95 kDa (PDZ) domain

and two pleckstrin homology domains, suggesting their

role as adaptor proteins involved in anchoring cell signal-

ing molecules to the plasma membrane [93].

The syntrophin unique domain and the carboxy-terminal

pleckstrin homology domain interact with the extreme

carboxy terminus of dystrophin [90]. Dystrobrevins share

significant sequence homology with the carboxy-terminal

domains of dystrophin [88,94]. Two dystrobrevin genes

encode multiple isoforms expressed in a wide array of

tissues: a-dystrobrevins, expressed predominantly in the

skeletal muscle with a-dystrobrevin-1 localizing to the

neuromuscular junction [94–96] and a-dystrobrevin-2

distributed throughout the sarcolemma [97]. In addition

to their independent interactions with dystrophin, syn-

trophins and dystrobrevins directly to bind each other

[98], it has been suggested that two syntrophin molecules

associate with each DGC through independent inter-

actions with dystrophin and dystrobrevin (Fig. 1).

b-Dystrobrevin is expressed in nonmuscle tissues and

associates with dystrophin, Dp71, utrophin, and with

different syntrophins participating in cellular polarization

[99].

In 1995, Earnest et al. [100] demonstrated the presence of

utrophin (Up400) in platelets as part of the membrane

skeleton, participating in an integrin-induced reorganiza-

tion of the cytoskeleton and in transmembrane signaling

that occurs as a consequence of integrin–ligand inter-

actions.

Although platelets do not express full-length dystrophin,

short dystrophins have been detected. In 2002, Austin

et al. [101] provided evidence that Dp71D110 is expressed

in human platelets as a component of the platelet mem-

brane cytoskeleton, and that it is redistributed in integ-

rin-induced reorganization of the cytoskeleton during

thrombin-induced platelet activation. It was stated that

Dp71D110 mediate cytoskeletal reorganization and signal-

ing in thrombin-stimulated platelet adhesion, because

adhesion of Dp71-deficient platelets from mdx3cv mice

was significantly reduced compared with platelets from

wild-type mice.

In 2005, these previous studies were complemented with

the reporting of the expression of two Dp71 isoforms

(Dp71d and Dp71f), of the Utrophin isoform Up71, and

of three dystrophin-associated proteins (DAPs): a-dys-

trobrevin-1 (a1-Db), a-dystrobrevin-2 (a2-Db), and

b-dystrobrevin (b-Db), as well as their co-distribution

with actin filaments in resting and in activated platelets

by adhesion to glass or by exposure to thrombin. In

addition, the distribution of Dp71d/Dp71D110
m, Up400/

Up71, and DAP was established. The presence of two

DGCs composed of short dystrophins (Dp71d/

Dp71D110
m) and utrophins (Up400/Up71) that were

associated with actin-based structures suggests their

Platelet cytoskeleton and its hemostatic role Cerecedo 801
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Schematic diagram of the dystrophin–glycoprotein complex (DGC) in
the skeletal muscle. Dystrophin is a linker between the subsarcolemmal
cytoskeleton and the extracellular matrix (ECM). Dystrophin (or its
homolog, utrophin) is associated with the dystroglycan complex, the
sarcoglycans–sarcospan complex, and the dystrobrevin/syntrophin
complex. The sarcoglycan–sarcospan complex comprises the
sarcoglycans (a, b, g, and d) and sarcospan. a-Dystroglycan (a-Dg)
binds to laminin-2 in the ECM and b-dystroglycan (b-Dg) in the
sarcolemma; b-Dg binds to the dystrophin, completing the link between
actin cytoskeleton and the ECM.
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participation in cytoskeleton remodeling, adhesion to

substrate, and granule centralization [102].

Platelet cytoskeleton with deficient short
dystrophins
Utrophin is an autosomal homolog of dystrophin that

can also bind to proteins of the DGC [60,103]. Dystro-

phin and utrophin share 74% similarity at the amino

acid level and have very similar domain structures

[104]. Utrophin is expressed in place of dystrophin

in fetal muscle, but in adult myofibers, it is confined

to the neuromuscular and myotendinous junctions.

Thus, utrophin upregulation is an attractive therapeutic

approach for DMD. Studies in mdx mice, a model for

DMD, have shown that utrophin, when overexpressed

in myofibers by viral vector-mediated delivery or by

transgenic means, can compensate for the absence of

dystrophin, restoring normal muscle function [105,106].

Preclinical investigations attempting to upregulate

utrophin have been conducted; however, no utrophin

upregulation therapy is available yet for clinical use in

patients with DMD.

Previous studies in patients with DMD have shown

normal plasmatic coagulation, a slight, but not signifi-

cant, increase of bleeding time, as well as a marked

reduction of the expression of glycoprotein GPIV

[107,108]. However, other authors have concluded that

the blood loss was not because of direct defects in

platelets, but rather because of vascular smooth muscle

dysfunction [109]. Platelets isolated from mdx3cv showed

a diminution of adhesion to collagen in response to

thrombin, suggesting that in major surgery, platelet

function deficiencies in adhesion and aggregation were

evidenced by the absence of the Dp71D110 isoform in

platelets [101].

In a retrospective study, Turturro et al. [110] also

described increased blood loss with the retention of

normal platelet function, suggesting that impaired vessel

reactivity caused the hemostatic dysfunction in patients

with DMD. In 2008, Labarque et al. [111] showed a

tendency toward increased bleeding, attributable to dys-

functional Dp71 in the cytoskeleton of DMD platelets.

The disorganized dystrophin-containing cytoskeleton in

the platelets of patients with DMD results in increased

blood loss because of decreased collagen response,

enhanced Gsa expression, and inducible Gs hyperfunc-

tion promoted by the natural release of prostacyclin

during a surgical procedure.

Analysis of dystrophin gene expression and function has

been aided by the studies in mice with dystrophin gene

mutations (mdx) [112,113]. The majority of dystrophin

studies to date have been carried out with the original

mdx mutant, which contains a premature stop codon in

exon 23 [112], different from that in 60–70% of mutations

in the human dystrophin gene, which corresponded to

deletions or duplications [114]. Four newer strains of

mdx mice have been described mdx2cv–5cv, which were

generated with N-ethylnitrosourea (ENU) chemical muta-

genesis [113]. All of the strains were found to have point

mutations; the mdx3cv allele arises from a mutant splice

acceptor site in intron 65 [115], rendering the unique

animal model that failed to express the Dp71 isoforms

of dystrophin (71 kDa) normally found in brain and in

many other nonmuscle tissues including platelets; there-

fore, this system directly reflects the effects of the absence

of Dp71 isoforms. Cellular distribution of DP71d/

Dp71D110
m, utrophins, and DAP in adhered platelets from

dystrophic mdx3cv mice was evaluated during the adhesion

process. The absence of Dp71 isoforms in platelets from

this animal model disrupted DAP expression and distri-

bution without modifying the platelet morphology dis-

played during the adhesion. Utrophins were found to be

upregulated and in association with DAPs to form a protein

complex that might compensate for the absence of Dp71

in mdx3cv platelets [116].

b-Dystroglycan and cell adhesion
In general, adhesion morphology and dynamics vary

considerably among different cell types. These differ-

ences might arise from isoform composition, intrinsic

differences in actin organization, or cell-type-dependent

variations in the molecular composition of the adhesions.

For a cell, dystroglycan represents a connection protein

between the ECM and the cytoskeleton, as well as a

signal transducer, it has been difficult to discriminate

between their mechanical and signaling functions, and it

is very probable that these are indivisible.

A commonly known mechanism for regulating adhesion-

dependent processes is tyrosine phosphorylation, and in

humans, phosphorylation of Y892 in b-dystroglycan

represents an important molecular switch to control its

function in podosomes and focal adhesions [117].

Peripheral membrane localization of dystroglycan confers

a scaffold role for the components of the actin signaling

machinery to generate actin-based structures such as

filopodia and microvilli by local activation of Cdc42 at

the membrane [118].

Links between the dystroglycan and integrin adhesion

systems have been implied both at the signaling and at

the mechano-structural level [119–121]. Dystroglycan is

clearly present in focal adhesions, interacting indirectly

with vinculin through vinexin and contributing to focal

adhesion stability and turnover, thus affecting the cell

migration [122].

Platelets display focal adhesions, as well as stress fibers, to

contract and facilitate the expulsion of growth and pro-

coagulant factors contained in the granules and to con-

strict the clot; in full-spread platelets, microfilament

bundles in association with other cytoskeleton proteins

are anchored in the focal contacts.
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The recent studies in migrating cells suggest that coordi-

nation and direct physical interaction of microtubules and

the actin network modulate adhesion development [123].

In platelets, a feasible association has been proposed

between these two cytoskeletal systems, as well as the

participation of the DGC, as part of the focal adhesion

complex. b-Dystroglycan was found to act as an interplay

protein between actin and microtubules, and additional

communication between these two cytoskeleton net-

works was maintained through the proteins of the focal

adhesion complex [124].

Additionally, the participation of DGC made up of short

dystrophins (Dp71d/Dp71D110
m) and utrophins (Up400/

Up71), their potential association with integrin b-1 frac-

tion, and the focal adhesion system (a-actinin, vinculin,

and talin) were evaluated during the platelet adhesion

process. It was shown that DGC composed of short dys-

trophins participated in stress fiber assembly and in the

centralization of cytoplasmic granules, whereas DGC com-

posed of utrophins participated in assembling and regulat-

ing focal adhesions, incorporating focal adhesive kinase

(FAK) into the complex. The simultaneous presence of

dystrophin and utrophin complexes indicates complemen-

tary structural and signaling mechanisms to the actin net-

work during the adhesion process [125] (Fig. 2).

The platelet cytoskeleton and granule
secretion
Dynamic reorganization of the platelet cytoskeleton trig-

gers a signaling cascade that results in the secretion of

adhesive proteins and platelet agonists from their gran-

ules. Four types of secretory organelles have been ident-

ified in platelets, based on their ultrastructure and

selective protein composition: a-granules, dense gran-

ules, multivesicular bodies, and lysosomes [126,127].

a-Granules develop from the budding vesicles in the

Golgi complex within megakaryocytes, where they trans-

form into multivesicular bodies, fuse with endocytic

vesicles, and are thought to be a common precursor of

both a and dense granules. a-Granule subpopulations can

be distinguished on the basis of morphology in spherical

and tubular granule population [128]. a-Granules exhibit

heterogeneous and spatial protein packaging, cargo type

[129–131], in response to agonists [132–134] and micro-

environmental factors, such as temperature, which selec-

tively regulate the release of their proteins [135].

The heterogeneity of a-granules is also based on the

expression of vesicle-associated membrane proteins

(VAMPs), which have been demonstrated to function

in platelet granule secretion. VAMP-7 moves to the

periphery during spreading, in contrast to the granules

Platelet cytoskeleton and its hemostatic role Cerecedo 803

Fig. 2

Actinin

Microtubule

F-actin

Myosin

α/β integrin

FAK

Tal Vinc

ECM

α-Dg

β-DgDp/Up
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and induces recruitment of the focal adhesion proteins vinculin (Vin), talin (Tal), and a-actinin (a-act), which connect directly with microfilaments and
short dystrophins (Dp71) and indirectly with microtubules and intermediate filaments. The adhesion complex activates integrin-associated signaling
cascades, including focal adhesion kinase (FAK). Dystroglycan plays a scaffold role, modulating the cytoplasmic protein kinases, and is in close
association with integrin b1.
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expressing VAMP-3 or VAMP-8, which are maintained at

the central granulomere of spread platelets [136].

The platelet cytoskeleton interacts with the select

soluble N-ethyl-maleimide-sensitive factor activating

protein receptor (SNARE), whereas actin polymerization

facilitates a-granule release [137]; on evaluating the

kinetics of granule secretion, as well as the degree of

secretion, it was determined that platelets treated with

actin-disrupting agents inhibit a-granule secretion, but

stimulate dense granule secretion [138]. In adhered

platelets, it was suggested that actin filaments and micro-

tubules contribute to a-granule and dense granule mobil-

ization in adhered platelets, identifying a-dystrobrevins

as part of the platelet transport machinery in close associ-

ation with ubiquitous kinesin heavy chain (UKHC) [139],

804 Blood Coagulation and Fibrinolysis 2013, Vol 24 No 8

Fig. 3
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Platelet distribution of intermediate filaments. (Panel A) Representative electron micrographs of the detergent-insoluble platelet cytoskeleton.
Platelets were viewed by the immunoelectron microscopy to localize vimentin in the detergent-insoluble cytoskeletons of adhered platelets. (Panel A,
right). High magnification of the granulomere, cytoplasm, and platelet membrane, observing vimentin distribution in these structures. (Panel B).
Adhered platelets processed by immunofluorescence staining of microfilaments labeled with tetramethylrhodamine (TRITC)-phalloidin, microtubules
labeled with Alexa 633 secondary antibody, and vimentin labeled with a fluorescein isothiocyanate-conjugated (FITC) secondary antibody. (Panel C).
Three-dimensional (3D) reconstruction of microfilaments, microtubules, and intermediate filaments of the lower adhered platelet on glass shown in
Panel B performed with AMIRA V5.3.2 software.
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a motor protein that has been described as participating

in the transport of cellular components in neurons

[140].

Single-platelet amperometric measurements performed

on surface-adherent platelets revealed that F-actin, but

not the microtubule coil, regulates platelet dense-body

granule secretion. These measurements suggested that

F-actin acts as a physical barrier to platelet dense-body

granule secretion [141].

Participation of desmin and vimentin in the
adhesion process
Intermediate filaments represent one of the main cyto-

skeletal systems and are one of the most stable com-

ponents found in vertebrate cells. Intermediate filaments

are highly dynamic structures and reorganize by phos-

phorylation, glycosylation, and transglutamination

[142,143]; they participate in organelle distribution

[144,145], signal transduction [142], cell polarity [146],

and gene regulation [147–149].

Intermediate filaments have a dual structure, with a

central conserved domain, in contrast with highly variable

head and tail domains, which play a crucial role in

intermediate filaments assembly; they interact with var-

ious cytoplasmic proteins including other cytoskeletal

components, conferring to the cell type different and

specific functions [150,151].

The three major filaments of the cytoskeleton, micro-

filaments, microtubules, and intermediate filaments, are

linked by the protein, plectin. Plectin is a member of

the plakin family of cytolinkers, which includes the

desmosomal desmoplakin and which also binds to integ-

rins and cadherins [152]. Plectin distribution is not

affected in desmin knockout mice, but in plectin knock-

out mice, the amounts of vinculin and spectrin are

reduced. Intermediate filaments appear to be trans-

ported throughout the cell associated with microtubules

and microfilaments via cytoplasmic dynein [153]; the

majority of intermediate filaments, including desmin,

together with microtubules, support and position the

organelles [154–156].

Tablin and Taube [157] in 1987 suggested the presence

of a 58-kDa vimentin-like protein that was associated

with the microtubule coil and the plasma membrane,

which thus may help to maintain the resting platelet’s

discoid shape. In adhered platelets, the presence of

desmin and vimentin and their association with DAPs,

as well as with microfilaments and microtubules, through

plectin have been described. A pharmacological approach

has evaluated the participation of vimentin and desmin

in granule trafficking. Additionally, the results have

suggested that the three cytoskeleton networks (micro-

filaments, microtubules, and intermediate filaments)

modulate platelet membranous system organization

[158] (Fig. 3).

Conclusion
Platelets are key elements to avoid bleeding; in devel-

oping their task, they undergo dramatic morphological

changes, thus becoming one of the best models for

studying cytoskeletal remodeling. To achieve their func-

tion, platelets follow consecutive events including a self-

amplifying process promoted by several proteins stored in

their own granules, with granule extrusion contents the

platelet’s priority.

Apparently, the mechanical and physiological functions of

microfilaments, microtubules, and intermediate filaments

in platelets are not exclusive. The cytoskeleton could play

concomitant structural and regulatory roles; thus, it would

be impossible to seek out a single function for each

cytoskeletal element. However, there is experimental

evidence that represents crucial information on the com-

plexity of these cytoskeletal cell fragments, whose versa-

tility is because of the association of diverse associated

proteins with the main cytoskeletal components. To date,

there are many proteins that have been described as part of

the platelet cytoskeleton, whereas others appear to be

redundant in terms of completing the function.
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Galván I. b-dystroglycan modulates the interplay between actin and
microtubules in human adhered platelets. Br J Haematol 2008;
141:517–528.

125 Cerecedo D, Mondragon R, Cisneros B, Martinez-Perez F, Martinez-Rojas
D, Rendon A. Role of dystrophins and utrophins in platelet adhesion
process. Br J Haematol 2006; 134:83–91.

126 Heijnen HF, Debili N, Vainchencker W, Breton-Gorius J, Geuze HJ, Sixma
JJ. Multivesicular bodies are an intermediate stage in the formation of
platelet alpha-granules. Blood 1998; 91:2313–2325.

127 White JG. The dense bodies of human platelets: inherent electron opacity
of the serotonin storage particles. Blood 1969; 33:598–606.

128 Van Nispen tot Pannerden H, de Haas F, Geerts W, Posthuma G, van Dijk
S, Heijnen HF. The platelet interior revisited: electron tomography reveals
tubular alpha-granule subtypes. Blood 2010; 116:1147–1156.

129 Sehgal S, Storrie B. Evidence that differential packaging of the major
platelet granule proteins von Willebrand factor and fibrinogen can support
their differential release. J Thromb Haemost 2007; 5:2009–2016.

130 Italiano JE Jr, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short
S, et al. Angiogenesis is regulated by a novel mechanism: pro- and
antiangiogenic proteins are organized into separate platelet alpha
granules and differentially released. Blood 2008; 111:1227–1233.

131 Chatterjee M, Huang Z, Zhang W, Jiang L, Hultenby K, Zhu L, et al.
Distinct platelet packaging, release, and surface expression of
proangiogenic and antiangiogenic factors on different platelet stimuli.
Blood 2011; 117:3907–3911.

132 Ma L, Perini R, McKnight W, Dicay M, Klein A, Hollenberg MD, Wallace JL.
Proteinase-activated receptors 1 and 4 counter-regulate endostatin and
VEGF release from human platelets. Proc Natl Acad Sci USA 2005;
102:216–220.

133 Battinelli EM, Markens BA, Italiano JE Jr. Release of angiogenesis
regulatory proteins from platelet alpha granules: modulation of physiologic
and pathologic angiogenesis. Blood 2011; 118:1359–1369.

134 Rex S, Beaulieu LM, Perlman DH, Vitseva O, Blair PS, McComb ME, et al.
Immune versus thrombotic stimulation of platelets differentially regulates
signalling pathways, intracellular protein-protein interactions, and alpha-
granule release. Thromb Haemost 2009; 102:97–110.

135 Etulain J, Lapponi MJ, Patrucchi SJ, Romaniuk MA, Benzadon R, Klement
GL, et al. Hyperthermia inhibits platelet hemostatic functions and
selectively regulates the release of alpha-granule proteins. J Thromb
Haemost 2011; 9:1562–1571.

136 Peters CG, Michelson AD, Flaumenhaft R. Granule exocytosis is required
for platelet spreading: differential sorting of alpha-granules expressing
VAMP-7. Blood 2012; 120:199–206.

137 Woronowicz K, Niederman RA. Proteomic analysis of the developing
intracytoplasmic membrane in Rhodobacter sphaeroides during
adaptation to low light intensity. Adv Exp Med Biol 2010; 675:161–
178.

138 Flaumenhaft R, Dilks JR, Rozenvayn N, Monahan-Earley RA, Feng D,
Dvorak AM. The actin cytoskeleton differentially regulates platelet alpha-
granule and dense-granule secretion. Blood 2005; 105:3879–3887.

139 Cerecedo D, Cisneros B, Mondragon R, Gonzalez S, Galvan IJ. Actin
filaments and microtubule dual-granule transport in human adhered
platelets: the role of alpha-dystrobrevins. Br J Haematol 2010; 149:124–
136.

140 Macioce P, Gambara G, Bernassola M, Gaddini L, Torreri P, Macchia G,
et al. Beta-dystrobrevin interacts directly with kinesin heavy chain in brain.
J Cell Sci 2003; 116:4847–4856.

141 Ge S, White JG, Haynes CL. Cytoskeletal F-actin, not the circumferential
coil of microtubules, regulates platelet dense-body granule secretion.
Platelets 2012; 23:259–263.

142 Hyder CL, Pallari HM, Kochin V, Eriksson JE. Providing cellular signposts
– posttranslational modifications of intermediate filaments. FEBS Lett
2008; 582:2140–2148.

143 Ku NO, Liao J, Omary MB. Phosphorylation of human keratin 18 serine 33
regulates binding to 14-3-3 proteins. EMBO J 1998; 17:1892–1906.

144 Carmo-Fonseca M, David-Ferreira JF. Interactions of intermediate
filaments with cell structures. Electron Microsc Rev 1990; 3:115–141.

145 Minin AA, Moldaver MV. Intermediate vimentin filaments and their role in
intracellular organelle distribution. Biochemistry (Mosc) 2008; 73:1453–
1466.

146 Oriolo AS, Wald FA, Ramsauer VP, Salas PJ. Intermediate filaments: a role
in epithelial polarity. Exp Cell Res 2007; 313:2255–2264.

147 Cohen TV, Hernandez L, Stewart CL. Functions of the nuclear envelope
and lamina in development and disease. Biochem Soc Trans 2008;
36:1329–1334.

148 Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L,
Goldman RD. Nuclear lamins: major factors in the structural organization
and function of the nucleus and chromatin. Genes Dev 2008; 22:832–
853.

149 Parnaik VK. Role of nuclear lamins in nuclear organization, cellular
signaling, and inherited diseases. Int Rev Cell Mol Biol 2008; 266:157–
206.

150 Bousquet O, Ma L, Yamada S, Gu C, Idei T, Takahashi K, et al. The
nonhelical tail domain of keratin 14 promotes filament bundling and
enhances the mechanical properties of keratin intermediate filaments in
vitro. J Cell Biol 2001; 155:747–754.

151 Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U. Intermediate
filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol
2007; 8:562–573.

152 Wiche G. Role of plectin in cytoskeleton organization and dynamics.
J Cell Sci 1998; 111 (Pt 17):2477–2486.

153 Helfand BT, Mikami A, Vallee RB, Goldman RD. A requirement for
cytoplasmic dynein and dynactin in intermediate filament network
assembly and organization. J Cell Biol 2002; 157:795–806.

154 Li Z, Mericskay M, Agbulut O, Butler-Browne G, Carlsson L, Thornell LE,
et al. Desmin is essential for the tensile strength and integrity of myofibrils
but not for myogenic commitment, differentiation, and fusion of skeletal
muscle. J Cell Biol 1997; 139:129–144.

155 Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y. Disruption of
muscle architecture and myocardial degeneration in mice lacking desmin.
J Cell Biol 1996; 134:1255–1270.

156 Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y. Desmin cytoskeleton
linked to muscle mitochondrial distribution and respiratory function. J Cell
Biol 2000; 150:1283–1298.

157 Tablin F, Taube D. Platelet intermediate filaments: detection of a
vimentinlike protein in human and bovine platelets. Cell Motil
Cytoskeleton 1987; 8:61–67.

158 Cerecedo D, Martinez-Vieyra I, Mondragon R, Mondragon M, Gonzalez S,
Galvan IJ. Haemostatic role of intermediate filaments in adhered platelets:
importance of the membranous system stability. J Cell Biochem 2013;
114:2050–2060.

808 Blood Coagulation and Fibrinolysis 2013, Vol 24 No 8


